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LETTER TO THE EDITOR 

Finite-size scaling for branched polymers on a Bethe lattice: 
an analytical result?$ 

S L A de Queiroz 
Departamento de Fisica, PUC, 22452 Rio de Janeiro, Brazil 

Received 28 February 1986 

Abstract. The application of finite-size scaling arguments to problems defined on a Bethe 
lattice is discussed for the case of isolated branched polymers. Fugacities p ,  A and h are 
assigned respectively to monomers, branching points and end points. For coordination 
numbers U +  1 = 3 and 4, analytical expressions are found for the pseudo-critical monomer 
fugacity on a finite, N-generation tree which satisfy p,( N) - pc  - N - * ,  thus constituting 
an analytical verification of finite-size scaling predictions, and implying that the correlation- 
length exponent U = $. The relationship between ‘chemical’ and ‘Euclidean’ distance is 
invoked in order to show that the mean-field value of a can be obtained through an 
appropriate exponent renormalisation. For fixed h, the crossover variable z is NA‘/* for 
U = 2 and NA”’ for U = 3, such that the N - *  behaviour of p,( N) - pc sets in for z >> 1. At 
A = 0 there is no pseudo-critical behaviour. 

In the theoretical study of phase transitions and critical phenomena the use of approxi- 
mation schemes is the rule, given the general impossibility of exactly calculating the 
properties of even the simplest model system in the thermodynamic limit on a realistic 
(two- or three-dimensional) lattice; Onsager’s solution of the two-dimensional Ising 
model in zero external field (Onsager 1944) stood as the lone exception for a long 
time, and has recently been joined by a few other special cases (see the book by Baxter 
(1982)). 

In the earlier approximate solutions one would, generally speaking, preserve the 
notion of an infinite translationally invariant array of sites while introducing some 
simplifying artificial feature either on the interactions (e.g. substituting an effective 
field for two-body forces, as in the standard mean-field approach to ferromagnetism) 
or in the underlying topological structure (e.g. substituting a Bethe lattice, which has 
no rings of bonds, for an actual two- or three-dimensional lattice). The equations of 
state thus obtained are usually amenable to analytical solutions, and the information 
extracted from these is more often than not qualitatively correct. On the other hand, 
the idea of deriving information about infinite systems from a study of their finite 
counterparts has proven extremely fruitful, especially after a theory (that of finite-size 
scaling) has been established which enables one to know precisely how to perform 
extrapolations from finite-size data to infer the behaviour of truly infinite systems (see 
Fisher 1971, Barber 1983). This is done, e.g., in the analysis of Monte Carlo data 
(Binder 1979); further, a calculational method has been developed (the phenomenologi- 
cal renormalisation group) whose foundations rely heavily on finite-size scaling theory 
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and which gives very accurate results (see e.g. Nightingale 1982). Finite-size scaling 
theory has been applied mainly to the analysis of numerical data; one remarkable 
exception arises in the discussion on the relation between finite-size correlation-length 
amplitudes and critical exponents (see e.g. Derrida and De Seze 1982, Privman and 
Fisher 1984), where long known analytical results for the Ising model (see Domb 
(1960) for early references) are shown to be consistent with a universality conjecture 
recently put forward. 

In this letter we discuss the extension of finite-size scaling concepts to the problem 
of branched polymers on a Bethe lattice. Owing to the tree-like structure of the Bethe 
lattice it is possible to extract analytical data which confirm earlier numerical data (de 
Queiroz 1981) where applicable. This enables us to understand in full detail the roles 
played by the different parameters involved, as regards critical (or pseudo-critical) 
behaviour; also, the relationship between topological (or ‘chemical’) distance and 
Euclidean length is explored, and its implications in a finite-size scaling context are 
shown. 

The analogy of the asymptotic conformational properties of a polymer in the limit 
of large number (NM) of monomer units to the behaviour of a magnet close to its 
critical temperature is by now well understood (see de Gennes 1979 and references 
therein). For the moment, it is enough to recall that, for a single polymer in a good 
solvent (where the only physical constraint is that of excluded volume, that is, two 
monomers cannot touch each other) one has for the average mean-square radius of 
gyration 

( R & ) ” 2 -  N R  

where the exponent v (which has this name because it is the correlation-length index 
of the corresponding magnet) depends only on space dimensionality and on whether 
the polymer is linear or has a finite percentage of branching units (note that if the 
number of branching units is held constant as the number of monomers increases, the 
exponent in ( 1 )  is the same as if there were no branching points at all, although the 
amplitudes are different in either case (Redner 1979)). Above the upper critical 
dimensionality d, ,  which is respectively 4 and 8 for linear and branched polymers, the 
exponent v sticks to its mean-field (or random-walk) value: vMF = f in the former case 
and a in the latter (de Gennes 1979, Redner 1979, Lubensky and Isaacson 1979; see 
also Dobson and Gordon 1964). Below d, ,  where the excluded volume effect (not 
taken into account in mean field) is relevant, one consequently has v > Y M F .  Since the 
Bethe lattice is usually regarded as being of infinite dimensionality (standard arguments 
are recalled in Baxter (1982)), one could think that mean-field results apply in this 
case. While this is true for ‘bulk’ exponents (thus e.g. p = y = 1 for the Ising model 
on a Bethe lattice (Baxter 1982)), the situation has to be analysed more carefully when 
an exponent related to the divergence of a length (such as v )  is considered, as we shall 
see below. 

As is usual in geometric problems, we begin by considering the grand partition, or 
generating, function for an isolated branched polymer on a lattice (McKenzie 1976, 
de Gennes 1979, Lubensky and Isaacson 1979): 

where A ( N M N b N v )  is the number of configurations of a single polymer (allowed by 
the excluded volume constraint) with N M  monomers, Nb branching points and N ,  
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end points; p, A and h are the respective fugacities per monomer, branching point and 
end point. For simplicity, only one type of branching unit is considered. The possibility 
of loop formation is excluded (this does not matter as regards universality classes; 
see, e.g., Lubensky and Isaacson (1979) and Family (1980)). 

Criticality is identified with a singularity of the generating function; although in 
p-A-h space there is a critical surface where r is singular, the fundamental (tem- 
perature-like) parameter is taken to be the monomer fugacity p .  This can be understood 
from the underlying field theory where, JI being the field density, the quantity p - p c  
( p ,  = critical monomer fugacity) arises naturally as the coefficient of the two-spin term 
q2 while A and h are respectively related to 
(field component along the external magnetic field) (Lubensky and Issacson 1979). A 
and h are then irrelevant in the renormalisation group sense (as long as they are 
non-zero; we comment on this point below) and can be regarded as fixed parameters, 
for each value of which there is a critical p ,  = pc(A,  h ) .  Recall that p + p ,  corresponds 
to the asymptotic behaviour NM + CO through the identification N;' - ( p  - p c )  (de 
Gennes 1979). 

In finite-size scaling theory one usually has that, for a finite system of linear size 
L which displays pseudo-critical behaviour (e.g. a susceptibility maximum) at a tem- 
perature Tc( L), the following proportionality holds: 

( f =  branching degree 3 3 )  and 

T,(L)- T,-  L- ' /"  (3) 

where Tc is the critical temperature of the infinite system (Fisher 1971, Barber 1983). 
This is not true in some pathological cases, e.g. the spherical model (see Fisher (1971) 
for a thorough discussion of this point); here we shall be concerned with the applicabil- 
ity of (3) to branched polymers on a Bethe lattice. 

On a Bethe lattice with coordination number a i l ,  where the exduded volume 
condition is fulfilled provided 'backward' steps are not taken into account, it is easy 
to see that the following relation holds for the generating function r N + 1  for a finite 
section of the lattice with N+ 1 generations: 

r N + I  ( P, A, h ) = P( h + AP"XR + ~ P X N  ) 

where X N  is defined by the recursion relation 

(4) 

XN = h +ApvX",i + apXN-1 x,=o ( 5 )  

(see de Queiroz 1981). Here, r(p,  A, h )  =limN+m r N ( p ,  A, h )  and, for simplicity, the 
branching units are assumed to be of degree a t  1. Recall that, in the model, monomers 
are assumed to occupy bonds, whereas branching and end points are located on lattice 
sites. 

If we assume that the equivalent of the finite linear size L in this case is the number 
of generations N, (3) above translates into 

( 6 )  

where Pc(N,  A, h )  (=P,(N)  for short) is the value of P at which r N ( P ,  A, h )  displays 
an incipient singularity (in numerical work, P , ( N )  was found by locating the point 
where rrj itself becomes greater than a given tolerance; results thus obtained were, 
for large N 3 100, independent of the pre-established tolerance down to one part in 
lo', which is of course quite an indispensable feature as regards their reliability (de 
Queiroz 1981)). One of our goals here will be to find P J N )  analytically. 

P J N ,  A, h )  - P,(A, h ) -  N-'I" 
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On the other hand, PJA, h )  (= P, for short) can be found by imposing 

XN+I(PC) = XN(PC) = x *  ( N - , a )  ( 7 a )  

and 

(de Queiroz 1981). One finds 

Note that Pc(A = 0) = l /u,  which is the result for linear polymers (McKenzie 1976). 

equation: 
In order to find P , ( N ) ,  we first transform recursion relation ( 5 )  into a differential 

( 9 )  

This is valid provided X N + l - X N < <  1 ,  that is, below (pseudo-) criticality; with the 
equivalence p J /  k ,  T between monomer fugacity and bond strength in the associated 
zero-component ferromagnet (de Gennes 1979), p < p c  corresponds to the disordered 
phase T > T, in a magnetic model. Equation ( 9 )  cannot be solved at once for generic 
U ;  however, solutions for the non-trivial cases U = 2 and U = 3 are relatively straight- 
forward. 

( I (2p  - l )2-4Ahp21)1/2,  the solution 
of ( 9 )  is 

dX/ d N = h + Ap'X" + (up  - 1 ) X .  

For u=2,  (8) gives p , = f ( l  +m); with a 

1 - 2 p  a 
+y coth( $) p < p c  or p > ;( 1 -m) l- 2Ap2 2Ap 

X =  

(2Ap2 ~ A P ~ ~ " ' \  2 ) 

Note that, for finite N,  the function has no singularity at p,; also, since we are 
working in the vicinity of p c  and for large N, a constant has been dropped in the 
integration which appears in the argument of the trigonometric (or hyperbolic) func- 
tions. 

As the transformation of the recursion relation into a differential equation depends 
on X,,,  - X N  being small, the above result should be valid only below the smallest 
value of p for which it diverges, for a given N. This latter value of p simulates the 
location of the incipient singularity of the true generating function for the finite lattice, 
pc( N ) .  One then has from (106)  the condition 

f ( l ( 2 p C ( N ) -  ~ ) ' - ~ A ~ P , ( N ) ~ ( ) ' ' * N  = 7r ( 1 1 )  
from which, assuming 1 /N2<< Ah (a condition that can always be fulfilled for finite 
branching-point fugacity), one obtains 

p,( N )  - p c =  V 2 / & G N 2 .  (12)  
Comparison with ( 6 )  gives Y = ;; we shall return to this later. 

As a side remark we note that, although ( l o b )  can represent the real generating 
function only between pc and pc( N ) ,  above p,( N )  it may be interpreted as an extension 
of X N ( p ) .  In this context, it is easy to show that the number of poles of (106)  per 
unit length on the p axis is linearly proportional to N, thus becoming a dense set as 
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N 3 00. The situation bears a similarity to the problem of a randomly dilute Ising spin 
chain, where the zeros of the finite sub-chain partition functions, located on the complex 
magnetic field plane, close on the real axis as the number of spins on a sub-chain goes 
to infinity thus giving rise to Griffiths singularities (see e.g. Wortis 1974); it could be 
interesting to check whether the analogy goes any further. 

Another way to obtain condition (1 1) which will be useful also in the case U = 3 
is by analysing the implicit expression for X, obtained from direct integration of (9). 
For u = 2 ,  with a as defined above, one has 

1 2p- l+2Ap2X-ia  
ia 2p-1+2ApzX+ia 
- In = N pc<p<j(1-J;27;). 

When we impose the condition X N  +CO, the expression of which the logarithm is 
taken approaches 1 = exp (2in77) where 

2in1r = iaN. (14) 

For n = 1, result (1 1) above is obtained (note that for n = 0 one is at pc). Higher values 
of n correspond to singularities of the extension of XN above pc( N) referred to above. 

For (T = 3, p i ’  = 3[1 +(:Ah2)”’] from (8), and (9) becomes 

d X / d N  = Ap3(X - X,)(X - X2)(X - X,) (15) 

where the Xi are the roots of 

3p-1 h x3+- x+,=o 
AP3 AP 

which, for pc<p < f  (the region where pc(N) is to be found), are given by 

X1 = -2r cosh( 4/3)  

X, = r cosh( 4 /3 )  + i a r  sinh( 4 /3)  

X3 = r cosh( 4/31 - i d r  sinh( 4 /3)  

(17a) 

(17b) 

(17c) 

h/2Ap3; cosh 4 = q / r 3  (Abramowitz and Stegun 1970). with r = ((3p - 1 1 / 3 A ~ ~ ) ’ / ~ ,  q 
The differential equation (1 5 )  is solved as 

AIn[X-X,]+BIn[3] x-x3 x -x3 =Ap3N 

where A-’ = (X,- X1)(X3 - X1); E-’  = (X, - X3)(X2- Xl). When X + 00, (X - 
X,)/(X - X,) + exp(i2mJ and ( X  - X,)/(X - X,) + exp(i2m1,). In order to have a 
real solution for p, it is easy to show that one must have 2n, = n,; (18) then gives the 
defining equation for pc( N): 

NAlp,(N)-flsinh 4 = 2 m ,  cosh(4/3). (19) 

Along the same lines of reasoning as for U = 2, pc( N) is given by the smallest value 
of p satisfying (19), and it can be shown from (19) that this value occurs for n, = I. 
For 1/N2<< we finally have 
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Equations (12) and (20) show that the dependence of p , ( N ) - p ,  on N is of the 
form N-’ both for cr = 2 and u = 3; on universality grounds, it is reasonable to expect 
that this will hold also for u > 3. The prefactors check very well with the numerical 
results of de Queiroz (1981). Comparing with ( 6 ) ,  we see that (12) and (20) stand 
among the few analytical results available in finite-size scaling, provided that we accept 
v = f for branched polymers on a Bethe lattice, which is different from the mean-field 
result, $. 

As regards this point, it is important to bear in mind the distinction between 
‘chemical’ and ‘Euclidean’ distance. While the former is given by the number of bonds 
in the shortest path between two points, the latter is, in an N-dimensional space, given 
as usual by 

where X j  is the ith Cartesian coordinate of point j .  No general relationship exists 
between these quantities, apart from the obvious one, d (Euclidean) S d (chemical), 
on finite-dimensional spaces; however, if one considers a Bethe lattice as infinite 
dimensional in the sense that each site has only one non-zero coordinate ( = 1 )  along 
an orthogonal set of axes while every bond connects sites at Euclidean distance =1 
(see e.g. Peruggi et a1 1984), then one has 

d (Euclidean) = a(chemica1)  (21) 

in the case where d(Euc1idean) stands for the extension, to the Bethe lattice, of the 
concept of Euclidean distance. 

for v in (12) and (20) is then related to the ‘chemical’ distance (the 
origin of this can be traced back to our assumption of the number of generations N, 
which is a chemical distance, being the analogue of the finite linear size). In order to 
obtain an exponent related to Euclidean distance (rather, to the above-mentioned 
extension of this concept), (21) implies that a factor of 4 must be present, where the 
mean-field result $ is recovered. We note in passing that the geometric origin of the 
present exponent ‘renormalisation’ is entirely distinct from the Fisher renormalisation 
of exponents which arises when a certain combination of fields is held constant in a 
field-theoretic study of branched polymers (Lubensky and Isaacson 1979). 

Returning to the analysis of (12) and (20) we see that, contrary to the N dependence, 
with dependence on A and h is non-universal; this is consistent with the above- 
mentioned idea of p as the fundamental parameter while A and h are secondary. On 
the other hand, it is easy to see that our results depend fundamentally on both A and 
h being non-zero. While the h = 0 case brings no new insight, it is interesting to note 
that as A decreases for fixed h the regime of validity of (12) and (20) is pushed further 
towards larger N ;  one then has a crossover region (at N* - A-‘/* for u = 2, N* - 
for u = 3) above which the N-* behaviour sets in, that is, branching effects are felt. 
On the other hand, we point out that in the extreme case A = 0 there is no pseudo-critical 
behaviour at p Z p , ;  in this case (which is that of linear polymers) one merely has a 
removable singularity in the generating function at p = p c  = 1/u for finite N. Thus, the 
crossover is from linear to branched polymer behaviour. 

In summary, we have discussed the application of finite-size scaling arguments to 
the problem of branched polymers on a Bethe lattice. For coordination numbers 3 
and 4, analytical expressions have been found for the pseudo-critical monomer fugacity 
on a finite N-generation tree which satisfy pc( N )  - p c  - N-’. The implications of this 

The value 
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as meaning that the correlation-length exponent v is have been examined, and the 
relationship between ‘chemical’ and ‘Euclidean’ distance on a Bethe lattice has been 
invoked in order to show that the mean-field result v = a  can be obtained through an 
appropriate renormalisation. The non-universality in A and h of the finite-size scaling 
expressions has been pointed out, and it has been found that (for fixed h )  the crossover 
variable z is NA’” for a=2 and NA’I3  for v=3, such that the N-* behaviour of 
pc(  N )  - p c  sets in for z >> 1. Further, at A = 0 there is no pseudo-critical behaviour. 

The author would like to thank P M Oliveira and C Tsallis for interesting suggestions 
and, most expecially, F Peruggi for an illuminating discussion and helpful correspon- 
dence. R R dos Santos is to be thanked for a critical reading of the manuscript and 
constructive remarks. 
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